Restoration of urban streams and ponds

Paul Wood, Department of Geography, Loughborough University.

Matthew Hill, Kate Mathers, Emma Seddon, Tom Worrall, Lynda Howard, John Gunn, Malcolm Greenwood.

Email – p.j.wood@lboro.ac.uk

Urban Aquatic Ecosystems

Outline

- 1. Where do they occur?
- 2. Why are they important?

 Physically / morphologically

 Ecologically / functioning
- 3. What can we do?

Urban aquatic ecosystems

Question

- 1. Where do they occur?
- 2. Why are they important?

 Physically / morphologically

 Ecologically / functioning
- 3. What can we do?

Answer

- 1. Everywhere where we are
- 2. Valuable resource:

Biodiversity / ecosystem processes and services

3. Much more than in the past!

Outline

- Sedimentation in urbanised streams
- Conservation and management of urban ponds
- Restoration approaches
- Reconciliation approaches

- 1. Natural
- 2. Anthropogenic:

Mineral extraction
Forestry – clear cutting
Agriculture
Urban development – construction
Dam and weir maintenance
Channel management

- Modification of substratum composition
- Modification of habitat patches
- Clogging of substratum interstitial spaces
- Reduction of interstitial flow, dissolved oxygen
- Reduction in efficiency of photosynthesis
- Spawning / reproductive activity
- Feeding efficiency
- Effect on all trophic levels

A – Summer Experiment

B - Autumn Experiment

Urban river sedimentation - Summer

Autumn

- A. Abundance
- **B.** Richness
- C. Diversity
- D. Dominance

Urban river sedimentation - Summer

Hydroptila sp.

B - increase

Fig. 1. Location of old industrial ponds around Huddersfield showing those ponds sampled, those not sampled, and those where the waterbody has been drained or redeveloped.

Common Name	Species	No. Ponds
Brown trout	Salmo trutta	5
Common carp	Cyprinus carpio	14
Crusian carp	Carassius carassius	5
Goldfish	Carassius auratus	1
Gudgeon	Gobio gobio	6
Tench	Tinca tinca	11
Bream	Abramis brama	18
Minnow	Phoxinus phoxinus	13
Rudd	Scardinius erythropthalmus	10
Roach	Rutilus rutilus	19
Chubb	Leuciscus cephalus	3
Dace	Leuciscus leuciscus	11
Three-spined stickleback	Gasterosteus aculeatus	28
Perch	Perca fluviatilis	7
Pike	Esox lucius	1

Policy Driver – EU Water Framework Directive

Under the EU Water Framework Directive all water bodies should aim to achieve 'Good Ecological Status' based on a predetermined reference condition.

Palaeoecology provides a way of establishing a reference condition. To date this has been tested on lakes and requires validation in riverine environments.

Using sub fossil macroinvertebrates

 Sub-fossil remains of some insect taxa are common and abundant in palaeochannel deposits

1. Trichoptera – Caddisfly larvae (Greenwood et al., 2006)

Using sub fossil macroinvertebrates

 Sub-fossil remains of some insect taxa are common and abundant in palaeochannel deposits

2. Coleoptera – Aquatic Beetles (Howard et al., 2009)

River Restoration and Reference Conditions – Putting the principle into Practice

Which reference / benchmark period?

- 1. Pre-human settlement
- 2. Pre-industrial revolution (1750)
- 3. Pre-land drainage (1850)
- 4. Pre-agricultural intensification (post 1945)

Example of a palaeoecological section from a river

River Wensum

River Wensum

River Wensum - Palaeochannel

River Wensum

Sampling the Palaeochannel at the River Wensum

Sampling the Palaeochannel at the River Wensum

Sampling the Palaeochannel at the River Wensum

Restored Section

R. Wensum Macroinvertebrate GES indicators

R. Wensum Macroinvertebrate GES indicators

Mean ASPT and LIFE scores show no significant difference between the contemporary and the palaeo samples (Kruskal-Wallis Test p > 0.05)

River Wensum - Results

Detrented correspondence analysis of contemporary and palaeo Trichoptera and Coleoptera samples from the River Wensum

River Wensum - Results

Detrented correspondence analysis of contemporary and palaeo Trichoptera and Coleoptera samples from the River Wensum

River Wensum - Results

Detrented correspondence analysis of contemporary and palaeo Trichoptera and Coleoptera samples from the River Wensum

Summary 1

- Urban aquatic ecosystems are highly dynamic and do not necessarily respond to stressors in a similar way to non-urban systems.
- Palaeoenvironmental approaches may help to identify a range of past reference conditions, providing decision makers with a spectrum of conditions on which to base conservation and restoration strategies.

Summary 2

- Rather than try to restore and replicate 'natural' (non-urban) should alternative states (reference conditions) be considered?
- Should we accept that urban aquatic ecosystems are different and celebrate the unique contribution that they make?
- Reconciliation Ecology?

Acknowledgements

Patrick Armitage and Geoff Petts

NERC
Nuffield Foundation
Environment Agency
Natural England
and many more!

Stenophylax permistus

