

Madeleine Moyle and John Boyle

Department of Geography and Planning University of Liverpool

Why phosphorus?

Why lake sediments?

Monitoring of both rivers and lakes can tell us about current** TP concentrations and catchment P exports

TP

Lakes also have a "memory" of <u>historic</u> TP and catchment P exports in the form of the sediment record

Historic lake water TP records from sediment cores

If we consider the P in the lake as a mass balance then:

$$L_{in} = L_{sed} + L_{out}$$

We can calculate sediment-inferred lake water TP (SI-TP) using:

$$SI-TP = \frac{L_{sed}}{R_P q_s} (1 - R_P)$$

Outflowing P L_{out}

L	P loading (area normalised P flux)	mg/m ² LA/yr
q _s	Areal water load (i.e. Q/LA)	m/yr
R _P	P retention coefficient (how well the sediment retains P) $R_P = \frac{L_{in} - L_{out}}{L_{in}} = \frac{L_{sed}}{L_{in}}$	-

Moyle & Boyle 2021

Historic lake water TP records from sediment cores

We can compare SI-TP to the existing diatom-inferred method (DI-TP)

The two methods show remarkable similarity for records that are:

- Independent
- Un-tweaked

Record from Crose Mere, Shropshire

Historic lake water TP records from sediment cores

At this site diatom preservation was progressively worse down core – we get a much longer record from SI-TP and lower "baseline" TP values.

But does 300 years really give a "baseline" TP concentration?

SI-TP and TP targets

The current TP targets do not reflect a natural system

High 25 µg L⁻¹ Good 35 µg L⁻¹

Natural baseline of ~ 3 µg L⁻¹

But is this realistic for a restoration TP target?

Meeting a 3 µg L⁻¹ baseline would require full reforestation of the catchment.

The same would go for all lowland lakes – there would be no space for people!

Historic P loading**: Sediment record v. model output

Do the models work?

Overestimating P load

Underestimating P load

Relative stability in sediment inferred values

**Diffuse P sources only